Exercise 34

At time $t=1$, a particle is located at position (1,3). If it moves in a velocity field

$$
\mathbf{F}(x, y)=\left\langle x y-2, y^{2}-10\right\rangle
$$

find its approximate location at time $t=1.05$.

Solution

The relationship between velocity and position in one dimension is

$$
v=\frac{d x}{d t}
$$

For the vectors here, it becomes

$$
\mathbf{F}=\frac{d \mathbf{X}}{d t}
$$

We don't know what the position is, so we'll approximate the derivative by the difference quotient.

$$
\mathbf{F} \approx \frac{\mathbf{X}(t)-\mathbf{X}\left(t_{0}\right)}{t-t_{0}}
$$

Evaluate the velocity at the particle's initial position, $x=1$ and $y=3$, and plug in $t=1.05$ and $t_{0}=1$ on the right side.

$$
\begin{aligned}
& \left.\mathbf{F}\right|_{\substack{x=1 \\
y=3}} \approx \frac{\mathbf{X}(1.05)-\mathbf{X}(1)}{1.05-1} \\
& \langle 1,-1\rangle \approx \frac{\mathbf{X}(1.05)-\langle 1,3\rangle}{0.05}
\end{aligned}
$$

Solve for $\mathbf{X}(1.05)$, the position vector of the particle at $t=1.05$.

$$
\langle 0.05,-0.05\rangle+\langle 1,3\rangle \approx \mathbf{X}(1.05)
$$

Therefore,

$$
\mathbf{X}(1.05) \approx\langle 1.05,2.95\rangle
$$

